
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке представлен график зависимости координаты материальной точки от времени её движения. Начальная координата x_0 точки равна:

1) 12 m

2) 10 м

3) 8,0 м

4) 6.0 M

5) 5,0 м

2. В момент времени $t_0 = 0$ с два тела начали двигаться вдоль оси Ox. Если их координаты с течением времени изменяются по законам $x_1 = -14t + 3.5t^2$ и $x_2 = 10t + 1.5t^2$ (x_1, x_2 — в метрах, t — в секундах), то тела встретятся через промежуток времени Δt , равный:

1) 10 c

2) 11 c 3) 12 c

4) 13 c

5) 14 c

3. Почтовый голубь дважды пролетел путь из пункта А в пункт В, двигаясь с одной и той же скоростью относительно воздуха. В первом случае, в безветренную погоду, голубь преодолел путь AB за промежуток времени $\Delta t_1=35$ мин. Во втором случае, при попутном ветре, скорость которого была постоянной, голубь пролетел этот путь за промежуток времени $\Delta t_2 = 30$ мин.

Если бы ветер был встречный, то путь AB голубь пролетел бы за промежуток времени Δt_3 , равный:

1) 30 мин

2) 35 мин

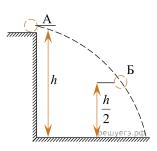
3) 38 мин

4) 42 мин

5) 45 мин

4. Плотность вещества камня массы m=20 кг составляет $\rho_1=2.5\cdot 10^3$ кг/м 3 . Чтобы удержать камень в воде (ρ_2 = $1.0 \cdot 10^3$ кг/м³), необходимо приложить силу, модуль F которой равен:

1) 0.30 kH


2) 0,24 κH

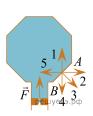
3) 0,20 kH

4) 0.12 kH

5) 0,10 κH

5. С некоторой высоты h в горизонтальном направлении бросили камень, траектория полёта которого показана штриховой линией (см. рис.). Если в точке E полная механическая энергия камня W = 12,0 Дж, то в точке A после броска она равна:

1) 0 Дж


2) 6,0 Дж

3) 8,0 Дж

4) 12,0 Дж

5) 24,0 Дж

6. В нижней части сосуда, заполненного газом, находится скользящий без трения невесомый поршень (см.рис.). Для удержания поршня в равновесии к нему приложена внешняя сила \vec{F} . Направление силы давления газа, действующей на плоскую стенку АВ сосуда, указано стрелкой, номер которой:

1) 1

2) 2

3)3

4) 4

5) 5

7. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерение	Температура, К	Давление, кПа	Объем, л
1	280	93	25
2	320	106	25
3	360	120	25
4	400	133	25
5	440	146	25

Такая закономерность характерна для процесса:

1) адиабатного

2) изобарного

3) изохорного

4) изотермического

5) циклического

8. При изобарном охлаждении идеального газа, количество вещества которого постоянно, его объем уменьшился от V_1 = 70 л до V_2 = 60 л. Если начальная температура газа t_1 = 77 °C, то конечная температура t_2 газа равна:

1) 17°C

2) 27°C 3) 37°C

9. За некоторый промежуток времени температура криптона, находящегося в герметично закрытом сосуде, изменилась на Δt = 100 °C. Если изменение внутренней энергии газа ΔU = 15 кДж, то количество вещества у криптона равно:

1) 6,0 моль

2) 9,0 моль

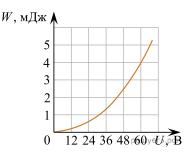
3) 12 моль

4) 18 моль

5) 27 моль

10. Сила тока в солнечной батарее измеряется в:

ваттах

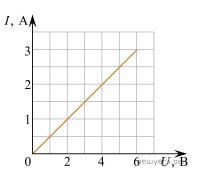

2) вольтах

3) амперах

4) ватт-часах

5) электрон-вольтах

11. График зависимости энергии W конденсатора от напряжения на нем Uпредставлен на рисунке. Ёмкость конденсатора C равна:



1) 1,5 мкФ 2) 2,2 мкФ 3) 4,4 мкФ

4) 6,7 мкФ

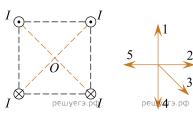
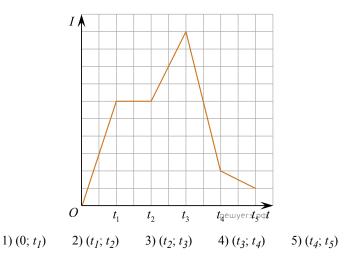
5) 15 мкФ

12. На рисунке представлен график зависимости силы тока, проходящего через константановый ($\rho = 5.0 \cdot 10^{-7} \; \text{Ом·м}$) проводник, от напряжения на нем. Если длина проводника l = 12 м, то площадь S его поперечного сечения равна:

1) 1.2 mm^2 2) 1.5 mm^2 3) 2.4 mm^2 4) 3.0 mm^2

 $5) 6.0 \text{ mm}^2$

13. Четыре длинных прямолинейных проводника, сила тока в которых одинакова, расположены в воздухе параллельно друг другу так, что центры их поперечных сечений находятся в вершинах квадрата (см.рис. 1). Направление вектора индукции \vec{B} результирующего магнитного поля, созданного этими токами в точке O, на рисунке 2 обозначено цифрой:

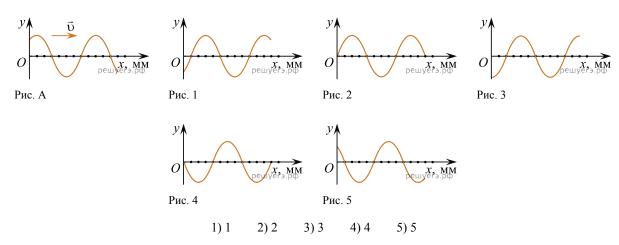
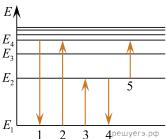
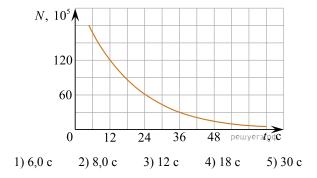

Рис. 1

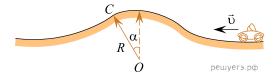
Рис. 2


- 1) 1 2) 2 3) 3 4) 4 5) 5
- **14.** На рисунке представлен график зависимости силы тока, проходящего по замкнутому проводящему контуру с постоянной индуктивностью, от времени. Интервал времени, в пределах которого значение модуля ЭДС самоиндукции $|\varepsilon|$ максимально:

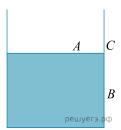
15. По шнуру в направлении оси Ox распространяется поперечная гармоническая волна. На рисунке, обозначенном буквой A, изображен шнур в момент времени $t_0=0$ с. Если T — период колебаний точек шнура, то шнур в момент времени $t_1=\frac{T}{4}$ изображен на рисунке, обозначенном цифрой:



- **16.** На дифракционную решётку, период которой d = 1,60 мкм, нормально падает монохроматический свет. Если угол между направлениями на главные дифракционные максимумы второго порядка, расположенные по обе стороны от центрального максимума, $\alpha = 120^{\circ}$, то длина волны λ падающего света равна:
 - 1) 410 нм 2) 433 нм 3) 485 нм 4) 520 нм 5) 692 нм
- **17.** На диаграмме показаны переходы атома водорода между различными энергетическими состояниями. Излучение с наибольшей длиной волны λ атом испускает при переходе, обозначенном цифрой:



1) 1 2) 2 3) 3 4) 4 5) 5


18. На рисунке изображён график зависимости числа N нераспавшихся ядер некоторого радиоактивного изотопа от времени t. Период полураспада $T_{1/2}$ этого изотопа равен:

- **19.** В момент начала отсчёта времени $t_0=0$ с два тела начали двигаться из одной точки вдоль оси Ox. Если зависимости проекций скоростей движения тел от времени имеют вид: $\upsilon_{1x}(t)=A+Bt$, где A=21 м/с, B=-1,2 м/с 2 и $\upsilon_{2x}(t)=C+Dt$, где C=-12 м/с, D=1,0 м/с 2 , то тела встретятся через промежуток времени Δt , равный ... \mathbf{c} .
- **20.** К бруску массой m=0,50 кг, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k=20 Н/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной, а модуль ускорения бруска a=2,4 м/с 2 . Если длина пружины в недеформированном состоянии $l_0=12$ см, то ее длина l при движении равна ... см.
- **21.** На гидроэлектростанции с высоты h = 65 м ежесекундно падает m = 200 т воды. Если полезная мощность электростанции $P_{\text{полезн}} = 82$ МВт, то коэффициент полезного действия η электростанции равен ... %.
- **22.** Автомобиль массой m=1 т движется по дороге со скоростью, модуль которой $\upsilon=30\frac{\rm M}{\rm C}$. Профиль дороги показан на рисунке. В точке C радиус кривизны профиля R=0,34 км. Если направление на точку C из центра кривизны составляет с вертикалью угол $\alpha=30,0^o$, то модуль силы F давления автомобиля на дорогу равен ... кН.

- **23.** В баллоне находится идеальный газ массой m_1 = 3 кг. После того как из баллона выпустили m = 0,75 кг газа и понизили абсолютную температуру оставшегося газа до T_2 = 340 K, давление газа в баллоне уменьшилось на α = 40,0 %. Модуль изменения абсолютной температуры ΔT газа в баллоне равен ... **K**
- **24.** Микроволновая печь потребляет электрическую мощность P=1,2 кВт. Если коэффициент полезного действия печи $\eta=63\%$, то вода $(c=4,2\frac{\kappa \square m}{\kappa\Gamma\cdot ^{\circ}C})$ массой m=0,40 кг за промежуток времени $\Delta \tau=80$ с, нагреется от температуры $t_1=15$ °C до температуры t_2 равной ... ${}^{\mathbf{0}}\mathbf{C}$.
- **25.** Идеальный одноатомный газ, количество вещества которого $\nu = 7,0$ моль, при изобарном охлаждении отдал количество теплоты $|Q_{\rm OXI}| = 24$ кДж. Если при этом объем газа уменьшился в k = 2,0 раза, то начальная температура газа t_1 равна ... °C.
- **26.** На рисунке изображено сечение сосуда с вертикальными стенками, находящегося в воздухе и заполненного водой (n=1,33). Световой луч, падающий из воздуха на поверхность воды в точке A, приходит в точку B, расположенную на стенке сосуда. Угол падения луча на воду $\alpha=30^\circ$. Если расстояние |AB|=88 мм, то расстояние |AC| равно ... мм.

27. Квадратная проволочная рамка с длиной стороны a=3,0 см помещена в однородное магнитное поле, модуль индукции которого B=620 мТл, так, что линии индукции перпендикулярны плоскости рамки. Если при исчезновении поля через поперечное сечение проволоки рамки пройдет заряд, модуль которого |q|=18 мКл, то сопротивление R проволоки рамки равно... мОм.

- **28.** Тонкое проволочное кольцо радиусом r=5.0 см и массой m=98.6 мг, изготовленное из проводника сопротивлением R=40 мОм, находится в неоднородном магнитном поле, проекция индукции которого на ось Ox имеет вид $B_x=kx$, где k=1.0 Тл/м, x координата. В направлении оси Ox кольцу ударом сообщили скорость, модуль которой $v_0=10$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ox, то до остановки кольцо прошло расстояние s, равное ... см.
- **29.** К электрической сети, напряжение в которой изменяется по гармоническому закону, подключена электрическая плитка, потребляющая мощность $P=900~{\rm Br}$. Если действующее значение напряжения на плитке $U_{\rm д}=127~{\rm B}$, то амплитудное значение силы тока I_0 в сети равно ... **A**.
- **30.** В электрической цепи, схема которой представлена на рисунке, ёмкости конденсаторов $C_1=40$ мкФ, $C_2=120$ мкФ, ЭДС источника тока $\epsilon=90,0$ В. Сопротивление резистора R_2 в два раза больше сопротивления резистора R_1 , то есть $R_2=2R_1$. В начальный момент времени ключ K замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыкания ключа K в резисторе R_2 выделится количество теплоты Q_2 , равное ... мДж.

